M. Sc. Daniel Wulff
Ratzeburger Allee 160
23562 Lübeck
Gebäude 64,
Raum 87
Email: | d.wulff(at)uni-luebeck.de |
Phone: | +49 451 31015225 |
Fax: | +49 451 31015204 |
Short Biography
Daniel Wulff completed his studies of Medical Engineering Science at the University of Lübeck in 2019 with the M.Sc. During his studies he worked in a medical technology company on the detection of patient movements in cone-beam CT imaging. Since mid 2019 Daniel Wulff is employed as a PhD student at the Institute of Robotics and Cognitive Systems and is working on deep learning based target tracking in 4D ultrasound for radiation therapy.
Research Interests
- Real-Time motion compensation in radiation therapy (tracking)
- Artificial Intelligence and Machine Learning
- Medical image processing
Memberships
- VDE (Verband der Elektrotechnik Elektronik Informationstechnik e.V.)
- DGBMT (Deutsche Gesellschaft für Biomedizinische Technik)
- GI (Gesellschaft für Informatik e.V.)
2023
Landmark tracking in 4D ultrasound using generalized representation learning, Int J CARS , vol. 18, pp. 493-500, 2023.
Towards Realistic 3D Ultrasound Synthesis: Deformable Augmentation using Conditional Variational Autoencoders, IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS) , pp. 821-826, 2023.
DOI: | 10.1109/CBMS58004.2023.00326 |
File: | CBMS58004.2023.00326 |
2022
Generalized Automatic Probe Alignment based on 3D Ultrasound, 2022. pp. 58-61.
DOI: | 10.1515/cdbme-2022-0015 |
File: | cdbme-2022-0015 |
2021
Comparison of Representation Learning Techniques for Tracking in time resolved 3D Ultrasound, 2021.
File: | 2201.03319 |
Cross Data Set Generalization of Ultrasound Image Augmentation using Representation Learning: A Case Study, 2021. pp. 755-758.
DOI: | 10.1515/cdbme-2021-2193 |
File: | cdbme-2021-2193 |
Medical Robotics for Ultrasound Imaging: Current Systems and Future Trends, Current Robotics Reports , vol. 2, pp. 55-71, 2021.
Towards automated ultrasound imaging -- robotic image acquisition in liver and prostate for long-term motion monitoring, Physics in Medicine Biology , vol. 66, no. 9, pp. 094002, 2021.
DOI: | 10.1088/1361-6560/abf277 |
File: | abf277 |
2020
Learning Local Feature Descriptions in 3D Ultrasound, 2020. pp. 323-330.
DOI: | 10.1109/BIBE50027.2020.00059 |
File: | BIBE50027.2020.00059 |
2019
Robust motion tracking of deformable targets in the liver using binary feature libraries in 4D ultrasound, 2019. pp. 601-604.
DOI: | 10.1515/cdbme-2019-0151 |
File: | cdbme-2019-0151 |
- Institute
- Directions
- Contact
- Staff
- Bruder, Ralf
- Çallar, Tolga-Can
- Ernst, Floris
- Gerwin, Moritz
- Golwalkar, Rucha
- Henke, Maria
- Higuchi, Saya
- Horuz, Coşku Can
- Janorschke, Christian
- Kasenbacher, Geoffrey
- Kairat, Sebastian
- Krusen, Marius
- Lu, Xinyu
- Nguyen, Ngoc Thinh
- Osburg, Jonas
- Otte, Sebastian
- Paysen, Jörg
- Rieckhoff, Cornelia
- Saggau, Volker
- Schwegmann, Holger
- Schweikard, Achim
- Starke, Julia
- Wulff, Daniel
- Xie, Jingyang